365 research outputs found

    Genomics and precision medicine for clinicians and scientists in hypertension

    Get PDF
    No abstract available

    The hidden hand of chloride in hypertension

    Get PDF
    Among the environmental factors that affect blood pressure, dietary sodium chloride has been studied the most, and there is general consensus that increased sodium chloride intake increases blood pressure. There is accruing evidence that chloride may have a role in blood pressure regulation which may perhaps be even more important than that of Na+. Though more than 85 % of Na+ is consumed as sodium chloride, there is evidence that Na+ and Cl− concentrations do not go necessarily hand in hand since they may originate from different sources. Hence, elucidating the role of Cl− as an independent player in blood pressure regulation will have clinical and public health implications in addition to advancing our understanding of electrolyte-mediated blood pressure regulation. In this review, we describe the evidence that support an independent role for Cl− on hypertension and cardiovascular health

    Genomics of blood pressure and hypertension: extending the mosaic theory toward stratification

    Get PDF
    The genetic architecture of blood pressure (BP) now includes more than 30 genes, with rare mutations resulting in inherited forms of hypertension or hypotension, and 1477 common single-nucleotide polymorphisms (SNPs). These signify the heterogeneity of the BP phenotype and support the mosaic theory of hypertension. The majority of monogenic syndromes involve the renin-angiotensin-aldosterone system and the adrenal glucocorticoid pathway, and a smaller fraction are due to rare neuroendocrine tumours of the adrenal glands and the sympathetic and parasympathetic paraganglia. Somatic mutations in genes coding for ion channels (KCNJ5 and CACNA1D) and adenosine triphosphatases (ATP1A1 and ATP2B3) highlight the central role of calcium signalling in autonomous aldosterone production by the adrenal gland. The per-SNP BP effect is small for SNPs according to genome-wide association studies (GWAS), and all of the GWAS-identified BP SNPs explain ∼ 27% of the 30%-50% estimated heritability of BP. Uromodulin is a novel pathway identified by GWAS, and it has now progressed to a genotype-directed clinical trial. The majority of the GWAS-identified BP SNPs show pleiotropic associations, and unravelling those signals and underpinning biological pathways offers potential opportunities for drug repurposing. The GWAS signals are predominantly from Europe-centric studies with other ancestries underrepresented, however, limiting the generalisability of the findings. In this review, we leverage the burgeoning list of polygenic and monogenic variants associated with BP regulation along with phenome-wide studies in the context of the mosaic theory of hypertension, and we explore potential translational aspects that underlie different hypertension subtypes

    Studies of the G protein beta 3 subunit in human hypertension

    Get PDF
    I have studied the GNB3 gene as a candidate gene for hypertension and left ventricular mass in a systematic and comprehensive manner. I have carried out association studies in three independent populations - A case-control study with well characterised hypertensive and their matched controls; a twin study looking at echocardiographic LV mass; and a large family based study analysing blood pressure and ECG LV mass. In addition I have also looked at three additional candidate genes including ACE, aldosterone synthase and beta-1 adrenoceptor. Though these studies concluded that there was no association between the C825T polymorphism and blood pressure or LV mass, I have demonstrated a significant heritability of various electrocardiographic measures of LV mass and an interaction between GNB3, ACE and SF1 explaining the variability of continuous measures of LV mass in this population. I studied the functional aspects of the GNB3 polymorphism by measuring platelet aggregation in normal human volunteers, using it as a marker of G-protein related signal transduction. However, there was also no association between epinephrine or platelet activating factor induced platelet aggregation and the GNB3 genotype. Finally, I performed molecular studies using cells transfected with b3 (wild-type) and b3-s (splice-variant) of GNB3 along with a fusion construct of a2AGi, and measuring of GTPase activity and calcium signalling. There was no significant difference between b3 or b3-s transfected cells, in terms of epinephrine stimulated GTPase activity, onset-delay of calcium release and time-to-peak of calcium signal. However, cells expressing b3-s showed a significantly lower rate of calcium release compared to cells expressing b3. These results indicate that the G protein b3-s subunit has no functional difference or possible slightly reduced effect compared to the wild type

    Genome-Wide Association Studies of Hypertension: Light at the End of the Tunnel

    Get PDF
    Despite its significant genetic component, the study of hypertension by genome-wide association presents more challenges than other common complex diseases. Its high prevalence, heterogeneity, and somewhat unclear definition are the challenges that need to be overcome on one hand. On the other hand, there are issues of small effect sizes and pleiotropism that are not specific to hypertension alone but nonetheless magnify the problems of genetic dissection when coupled with phenotypic misclassification. We discuss issues of study design and summarise published genome-wide association studies (GWASs) of hypertension and blood pressure. With careful study design and analysis success is possible, as demonstrated by the recent large-scale studies. Following these, there is still further scope to advance the field through high fidelity phenotyping and deep sequencing

    Genomics of hypertension: the road to precision medicine

    Get PDF
    The known genetic architecture of blood pressure now comprises >30 genes, with rare variants resulting in monogenic forms of hypertension or hypotension and >1,477 common single-nucleotide polymorphisms (SNPs) being associated with the blood pressure phenotype. Monogenic blood pressure syndromes predominantly involve the renin–angiotensin–aldosterone system and the adrenal glucocorticoid pathway, with a smaller fraction caused by neuroendocrine tumours of the sympathetic and parasympathetic nervous systems. The SNPs identified in genome-wide association studies (GWAS) as being associated with the blood pressure phenotype explain only approximately 27% of the 30–50% estimated heritability of blood pressure, and the effect of each SNP on the blood pressure phenotype is small. A paucity of SNPs from GWAS are mapped to known genes causing monogenic blood pressure syndromes. For example, a GWAS signal mapped to the gene encoding uromodulin has been shown to affect blood pressure by influencing sodium homeostasis, and the effects of another GWAS signal were mediated by endothelin. However, the majority of blood pressure-associated SNPs show pleiotropic associations. Unravelling these associations can potentially help us to understand the underlying biological pathways. In this Review, we appraise the current knowledge of blood pressure genomics, explore the causal pathways for hypertension identified in Mendelian randomization studies and highlight the opportunities for drug repurposing and pharmacogenomics for the treatment of hypertension

    Monotherapy with major antihypertensive drug classes and risk of hospital admissions for mood disorders

    Get PDF
    Major depressive and bipolar disorders predispose to atherosclerosis, and there is accruing data from animal model, epidemiological, and genomic studies that commonly used antihypertensive drugs may have a role in the pathogenesis or course of mood disorders. In this study, we propose to determine whether antihypertensive drugs have an impact on mood disorders through the analysis of patients on monotherapy with different classes of antihypertensive drugs from a large hospital database of 525 046 patients with follow-up for 5 years. There were 144 066 eligible patients fulfilling the inclusion criteria: age 40 to 80 years old at time of antihypertensive prescription and medication exposure >90 days. The burden of comorbidity assessed by Charlson and Elixhauser scores showed an independent linear association with mood disorder diagnosis. The median time to hospital admission with mood disorder was 847 days for the 299 admissions (641 685 person-years of follow-up). Patients on angiotensin-converting enzyme inhibitors or angiotensin receptor blockers had the lowest risk for mood disorder admissions, and compared with this group, those on β-blockers (hazard ratio=2.11; [95% confidence interval, 1.12–3.98]; P=0.02) and calcium antagonists (2.28 [95% confidence interval, 1.13–4.58]; P=0.02) showed higher risk, whereas those on no antihypertensives (1.63 [95% confidence interval, 0.94–2.82]; P=0.08) and thiazide diuretics (1.56 [95% confidence interval, 0.65–3.73]; P=0.32) showed no significant difference. Overall, our exploratory findings suggest possible differential effects of antihypertensive medications on mood that merits further study: calcium antagonists and β-blockers may be associated with increased risk, whereas angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may be associated with a decreased risk of mood disorders

    Risk of neuropsychiatric adverse effects of lipid-lowering drugs: a Mendelian randomization study

    Get PDF
    Background: Recent studies have highlighted the possible risk of neuropsychiatric adverse effects during treatment with lipid-lowering medications. However, there are still controversies that require a novel genetic-based approach to verify whether the impact of lipid-lowering drug treatment results in neuropsychiatric troubles including insomnia, depression, and neuroticism. Thus, we applied Mendelian randomization to assess any potential neuropsychiatric adverse effects of conventional lipid-lowering drugs such as statins, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and ezetimibe. Methods: A 2-sample Mendelian randomization study was conducted based on summary statistics from genome-wide association studies for lipids, insomnia, depression, and neuroticism. Single-nucleotide polymorphisms located in or near drug target genes of HMGCR, PCSK9, and NPC1L1 were used as proxies for statins, PCSK9 inhibitors, and ezetimibe therapy, respectively. To assess the validity of the genetic risk score, their associations with coronary artery disease were used as a positive control. Results: The Mendelian randomization analysis showed a statistically significant (P <.004) increased risk of depression after correcting for multiple testing with both statins (odds ratio=1.15, 95% CI: 1.04–1.19) and PCSK9 inhibitor treatment (odds ratio =1.19, 95%CI: 1.1–1.29). The risk of neuroticism was slightly reduced with statin therapy (odds ratio=0.9, 95%CI: 0.83–0.97). No significant adverse effects were associated with ezetimibe treatment. As expected, the 3 medications significantly reduced the risk of coronary artery disease. Conclusion: Using a genetic-based approach, this study showed an increased risk of depression during statin and PCSK9 inhibitor therapy while their association with insomnia risk was not significant

    Cardiovascular precision medicine – a pharmacogenomic perspective

    Get PDF
    Precision medicine envisages the integration of an individual’s clinical and biological features obtained from laboratory tests, imaging, high-throughput omics and health records, to drive a personalised approach to diagnosis and treatment with a higher chance of success. As only up to half of patients respond to medication prescribed following the current one-size-fits-all treatment strategy, the need for a more personalised approach is evident. One of the routes to transforming healthcare through precision medicine is pharmacogenomics (PGx). Around 95% of the population is estimated to carry one or more actionable pharmacogenetic variants and over 75% of adults over 50 years old are on a prescription with a known PGx association. Whilst there are compelling examples of pharmacogenomic implementation in clinical practice, the case for cardiovascular PGx is still evolving. In this review, we shall summarise the current status of PGx in cardiovascular diseases and look at the key enablers and barriers to PGx implementation in clinical practice

    Access to

    Get PDF
    Despite its significant genetic component, the study of hypertension by genome-wide association presents more challenges than other common complex diseases. Its high prevalence, heterogeneity, and somewhat unclear definition are the challenges that need to be overcome on one hand. On the other hand, there are issues of small effect sizes and pleiotropism that are not specific to hypertension alone but nonetheless magnify the problems of genetic dissection when coupled with phenotypic misclassification. We discuss issues of study design and summarise published genome-wide association studies (GWASs) of hypertension and blood pressure. With careful study design and analysis success is possible, as demonstrated by the recent large-scale studies. Following these, there is still further scope to advance the field through high fidelity phenotyping and deep sequencing
    corecore